
Interval Scheduling on Identical Machines

Authors:

Khalid I. Bouzina. Senior Analyst, Risk Management Solutions
Inc., 149 Commonwealth Drive, Menlo Park, California 94025.

Hamilton Emmons. Professor and Chairman, Department of
Operations Research, Case Western Reserve University,
Cleveland, Ohio 44106-7235.

Date: January, 1995.
First Revision Date: September 20, 1995

Abstract: Interval Scheduling problems (IS) address the situation where jobs with

fixed start and fixed end times are to be processed on parallel identical machines. The

optimization criteria of interest are the maximization of the number of jobs completed

and, in case weights are associated with jobs, the subset of jobs with maximal total

weight. We present polynomial solutions to several IS problems and study

computational complexity issues in the situation where bounds are imposed on the total

operating time of the machines. With this constraint, we show that tractability is

achieved again when job preemption is allowed.

Key Words: Sequencing/Scheduling, Interval Scheduling, Parallel Processing,
Combinatorial Optimization, Computational Complexity.

Journal of Global Optimization 9: 379-393, 1996.
0 1996 Kluwer Academic Publishers. Printed in the Netherlands.

379

380 KHALID 1. BOUZINA AND HAMILTON EMMONS

Interval Scheduling on Identical Machines

Interval Scheduling (IS) is a class of scheduling problems where independent

tasks, each with a fixed start time and fixed end time, are to be processed in a parallel

machine environment. In this study, it is further assumed that all machines are identical.

Therefore, with no constraint on machine availability, it is easy to see that the maximal

job overlap over time equals the minimal number of machines required to complete all

jobs. However, an interesting combinatorial issue rises when, given the total number of

machines available, not all jobs can be processed. In this situation, two problems require

attention. First, the finding of the maximal number of completed jobs (Maximal IS).

Then, in case a weight representing the task priority or value is associated with each job,

the finding of a subset of jobs with maximal total weight (Maximal Weight IS). The aim

of this paper is to address such problems under different scenarios.

IS problems have received much attention during the last decade or so and may

be encountered under different names in the literature, such as “Fixed Job Scheduling”

(Arkin & Silverberg 1987, Fishetti et al. 1989 and Dondeti & Emmons 1992) “The

Classroom Assignment Problem” (Carter and Tovey 1992) “The Bus Driver Scheduling

Problem” (Martello and Toth 1986) “Class Scheduling” (Kolen and Kroon 1991).

However, we prefer to refer to them as IS because of the analogy to an even broader

class of problems addressed in Graph Theory, namely, Interval Graph problems

(Golumbic 1980 and Kolen et al. 1986).

In this paper, we first present an algorithm solving Maximal IS. Next, a

Minimal Cost Flow formulation is presented for Maximal Weight IS and is extended to

solve Maximal IS with minimal total processing time. Thereafter, we introduce a

constraint on the working time of the machines, namely that no machine operates for

more than T units of time. This problem is referred to as TIS. We provide an algorithm

INTERVAL SCHEDULING ON IDENTICAL MACHINE.5 381

solving Maximal Preemptive TIS (that is, when job preemption is allowed) and show

that Maximal Weight Preemptive TIS is M-Hard. Integer programming formulations

are also presented.

1. An algorithm for Maximal IS

Given n jobs with fixed start times sj and fixed end times ej, j=l,...,n, we seek

the largest subset, S, of jobs that can be processed on m parallel identical machines.

The following algorithm finds a solution to Maximal IS in O(n max(log n, m)) time.

Algorithm 1:

1. I Set S to the empv set.

I. 2. Sort jobs in chronological order of arrival.

1.3. Consider jobs sequentially. At each start time add the arriving job to 5’.

If there is no machine to accommodate it, remove from S the job with latest

ending time.

It is easy to see that Algorithm 1 produces a feasible schedule with the desired

complexity. To establish optimality, we first state the following lemma without proof.

Lemma 1: Given a set of jobs to be scheduled, suppose one job is shortened (its start

time is unchanged, but its end time is earlier), with all else unchanged.

Then the maximal number of jobs that can be scheduled is either unchanged

or increased.

Without loss of generality, we can assume all jobs have distinct start times. Thus, in

case i >l jobs have the same arrival time s, assign new start times s, S+E, s+~E,..., s +

(I-1)~ for infinitesimal E > 0, in any order. We now present the proposition on which

the algorithm depends.

Proposition 1: Let t, = earliest time at which more than m jobs require processing,

J = (jobs requiring processing at t,) and ek = maxjEJ ej.

Then there exists an optimal schedule which does not include k.

382 KHALID I. BOUZINA AND HAMILTON EMMONS

Proof: Clearly, one of the (m+l) jobs in J cannot be done. The choice depends only on

the future (t > t,), since all jobs started earlier must have been successfully completed or

be in J, and the amount of processing already undergone at time to by jobs in J is

irrelevant for resolving the present and future conflicts. Thus, redefine the start times of

all j E J to be to. Now, suppose we remove some job i rather than job k. By switching

them (remove k rather than i), we are replacing a longer job with a shorter, or in effect

shortening a job. By Lemma 1, this can only increase the number of jobs we can

eventually schedule. 0

2. Minimal Cost Flow Formulation of Maximal Weight IS

Given an instance of IS, assume that a weight wj is associated with each job j,

j=l,...,n and let us now address the problem of finding a subset of jobs S such that S is

feasible and the sum of the weights of the jobs in S is maximum. In Arkin and

Silverberg (1987) a solution to this problem based on a minimal cost flow formulation

is given. Their proposed algorithm requires a preliminary construction of the interval

graph corresponding to the IS instance and the identification of all maximal cliques in

such graph (see Golumbic 1980). We will present an algorithm for the problem that is

also based on the solving of a minimal cost flow problem. However, its related network

construction is obtained directly from the IS instance and requires exactly n+l nodes

and 2n arcs.

Algorithm 2:

2. I Index jobs in chronological order of arrival.

2.2 Create nodes s = VI, v2,..,,vn for each job and dummy node t = ‘;?+k

Connect vj to vj+l with arc of cost zero and capacity m, j=l,...,n.

2.3 Create arc (vj,v,$ where k is thefirstjob not overlapping with job j, j=I,...n.

If no such job k exists, create arc (5 t). Each of these arc has COSI -113 and

capacity 1.

INTERVAL SCHEDULING ON IDENTICAL MACHINES 383

2.4 Require a flow of m from s to t and solve the minimal cost flow problem.

Proposition 2: The optimal solution to the Minimal Cost Flow problem is also an

optimal solution to Maximal Weight IS.

Proof: Let V be the subset of jobs corresponding to arcs with cost -wj and a flow of

one unit on them. First, let us show that V is feasible for Maximal Weight IS. Note that

having a flow of one unit on such arcs is equivalent to assigning a machine to the

corresponding job. Also, since the node to which the flow is surrendered corresponds to

the first job that does not overlap with the currently processed job, at no time do we

have a machine assigned to more than one job. Furthermore, since only a total of m

units is allowed through the network, at most m machines at all times will be assigned to

jobs. Hence, V is feasible for Maximal Weight IS. Now, an optimal solution to

Maximal Weight IS is equivalent to an optimal solution to the minimal cost flow

problem when we note that job j is processed if and only if the corresponding arc (vj,vL)

has a non-zero flow on it. Therefore, the absolute value of the minimal cost solution is

the maximal total value of the jobs processed for Maximal Weight IS. 0

Example: Consider the jobs in Figure 1 .a, to be scheduled on 2 machines.

5 7 3
, , 1 I

0 3 5 6 7 8 9 IO 11 12 14 16 181920 22 24

Time Axis

Figure I.a: Insfance of IS Problem.

384 KHALIDLBOUZINAANDHAMILTONEMMONS

For Maximal IS, Algorithm 1 shows that 6 jobs can be processed. It selects job 2 and 8

for omission, though other pairs of jobs are possible. For Maximal Weight IS, the

network structure for Algorithm 2 is given in Figure 1 .b, where each arc is labeled with

its cost, -wj , and capacity, 1, except for the arcs generated in Step 2 (those on the straight

line from s to t) whose costs and capacities are 0 and 2, respectively. If, for example, we

charge by the hour and wish to find the subset of jobs that will keep our 2 machines

busiest, then with wj = pj , j = l,...,S, the minimal cost flow is -5 and utilizes the arcs

corresponding to the 5 jobs {4,5,6,7,8}.

-W
4 c

1
/

-w2 1 -we 1
.

/

S, _ y\ _ _ %_ a . . 1 , - / VT .' /- / . /

V4 V2 Vl % v6

.
/ ,

-wg 1 -w1 1 -w,j 1

t

--
-W7 1 -wg 1

Figure I. b: Network Representation

Let us now reexamine the Maximal IS problem and address the dual criterion of

determining a subset S of maximal cardinality with the property that the sum of the

weights of the jobs in S is maximal.

Corollary 1: Let M is a positive real number such that M > 2 wj , and redefine wj as
&I

wj +M for each job j. Then Algorithm 2 gives an optimal solution to Maximal

IS with Maximal Total Weight.

PiTERVAL SCHEDULING ON IDENTICAL MACHINES 385

Proof: Since M is so large, maximization of total weights will first maximize the

number of jobs scheduled, since each contributes M to the objective. Second, it will

maximize the weights added. 0

The following special case of Corollary 1, where jobs weights are not initially given,

will be needed later in this paper.

Corollary 2: For each job j with processing time pj = ej - sj., define a weight wj = M - pj,

where M is a positive real number such that M 22 pj. Then Algorithm 2
jd

gives an optimal solution to Maximal IS with Minimal Total Processing Time

3. Model and Complexity of Maximal TIS

Let us add the constraint that no machine may work, in total, for more than a

given operating time T and consider an instance of TIS. Notice that the decision

version of TIS, that is, the problem of determining whether there is a feasible schedule

for all jobs is NP-Complete (Fischetti et al. 1989). The authors proved completeness

through transformation from the Bin Packing problem (Garey and Johnson 1979) by

showing that solving an instance of TIS where no two jobs overlap will solve the

instance of the Bin Packing problem as well. Consequently, Maximal TIS is an NP-

Hard problem. Maximal TIS and Maximal Weight TIS can be stated as a O-1 Integer

programming problem as follows. Let {t,, t,,...} be the sorted sequence of the sj’s and

ej’s in chronological order with duplicates removed and let P, be the set of jobs available

in interval [\, $+i), k = 1, 2,... Finally, create binary variables xij taking the value one if

and only if machine i processes job j for i=l,...,m and j=l,...,n.

m n
Maximize C C wjxij

i=lj=l

386 KHALID I. BOUZINA AND HAMILTON EMMONS

Subject to :
m
z XB II j = I,...+ (1)

i=l

c xij 2 1 i = l,..., m; k = 1, 2 ,... (2)
j EPk

g pjxij I T i = l,...,m (3)
j=l

XjjE ((41) i=l ,..., m; j = I,..., n (4)

Constraints (I) require that each job j be processed on only one machine. Constraints

(2) state that each machine cannot process more than one job at a time. Constraints (3)

prohibit any machine from having a total operating time exceeding T.

4. An algorithm for Maximal Preemptive TIS

Given an instance of TIS, let us introduce the relaxation that jobs may be split

and assigned to two or more machines. Then, this preemptive version of TIS becomes

tractable when we seek a feasible set of jobs S with maximal cardinality. The following

algorithm for Maximal Preemptive TIS provides only the set S of jobs of maximal

cardinality which satisfies C pi 2 mT and has no more than m jobs in process at any
id

time. The actual (preemptive) schedule of the jobs is constructed by keeping the

machines equally loaded over time. The start and end times of jobs may be used as

increments in this procedure.

Algorithm 3:

3.1 Index jobs in increasing order of their processing time pj = ej - si j = 1,n.

Break ties arbitrarily.

3.2 Initialize: S = 0, j = 0.

INTERVAL SCHEDULING ON IDENTICAL MACHINES

3.3 Repeat

j =j +I.

If m-!-l jobs in Scifj) are con@cting at some time point,

apply Algorithm I to the jobs in {l,...,j}.

Let S’ be the resulting schedule.

If Is/= IS/H,

apply Corollary 2 of Algorithm 2 to the jobs in {l,...,j).

Let S* be the resulting schedule.

If C pi _<rnT, makeS=S*.
i&s-

Endif

Endif

Else make S = S c, 0).

Endif

Until j = n orpj+l + C pi > mT.
its

387

Feasibility is insured in step 3.3 of the algorithm Complexity is dictated by step 3.3,

when Algorithm 2 is used, in which case a minimal cost flow is sought for in a network

having j+l nodes and 2j arcs, j = l,...,n. Optimality will be shown in Proposition 3, but

first, two related lemmas are stated (the proof of Lemma 2 is trivial and is omitted).

Lemma 2: Consider an instance of TIS where at no time are there more than m

overlapping jobs, and assume the jobs ordered in increasing order of their

processing times. An optimal schedule for Maximal Preemptive TIS for such
j+l

an instance includes the first k jobs for which k = min(j: 1 pi > mT}.
i=l

Lemma 3: Consider an instance of TIS where the jobs are ordered in increasing order of

their processing times and assume that, at each iteration of Algorithm 3, a

feasible set S with maximal cardinality and minimal sum of the processing

388 KHALID 1. BOUZINA AND HAMILTON EMMONS

times is maintained. If at some iteration j, the total processing time of the

jobs in S u G} exceeds mT, then the current schedule S is optimal.

Proof: Given the ordered sequence of jobs, consider all jobs in J = { l,...j-1 }. We have

that, for any feasible set S’ in J, 1 S’ 1 zz 1 S 1 and if 1 S’ 1 = 1 S I then c pi > C pi. Also,
id isS

from Lemma 2, it follows that replacing any job in S by a job not in J, will only result in a

schedule of bigger sum of the processing times. Now, consider adding a job j’ such that

pf 2 pj to the list S of scheduled jobs. Whether j’ conflicts or not with any of the jobs in S,

we still have c pi> mT for a feasible set S’ in J that can accommodate j’. Hence, if S is
icS'u!j)

as described in Lemma 3, it is optimal for Maximal Preemptive TIS. Cl

Proposition 3: The schedule S produced by Algorithm 3 is optimal for Maximal

Preemptive TIS.

Proof: It follows from Lemma 3 that, at this stage, we need only show that at each

iteration the schedule S produced by Algorithm 3 has maximal cardinality (property 1)

and the sum of the processing times of the jobs in S is minimal (property 2). Assume

the result true up to the (j-l)th iteration and consider adding the jth job to S from the

ordered list. Three cases need to be examined. If the addition of job j does not create

m+l conflicting jobs at any time point then, naturally properties 1 and 2 are maintained

for the new schedule Su{j}. Now, if a conflict does occur, but the addition of job j

does not produce a schedule with higher cardinality, then it follows from Proposition 1

and from the fact that the processing time of job j is greater than or equal to any of the

jobs scanned so far, that the current schedule S should be kept and consequently, no

property is violated. Finally, suppose that the adjunction of job j creates a conflict but

there is at least a set S’ in { l,...j} such that 1 S’ 1 = 1 S 1 +l. Then the schedule S*

provided, when using Algorithm 2 for the jobs in { I,...j} satisfies properties 1 and 2 as

shown in Corollary 1. Therefore, if the sum of the processing times of the jobs in S*

INTERVAL SCHEDULING ON IDENTICAL MACHINE..3

does not exceed mT, S* is optimal up to iteration j. If c pi > mT, S* cannot be

389

accepted and neither will be any other schedule in (l,...j} with the same cardinality as

S* for the obvious reason that the sum of the processing times of the jobs in S* is

already minimal.

Hence, the current set S remains optimal for the jth iteration. However, this does

not constitute a stopping criterion for Algorithm 3. Indeed, the set S* has been created

in respect to the adjunction of job j. For any other job k, k>j, it is possible for the

algorithm to produce (at a later iteration) a set S* such that c pi5 mT.
~sS’u(k)

Considering that all outcomes have been examined, the subset of jobs S constructed by

Algorithm 3 is optimal for Maximal Preemptive TIS. Cl

Example: Consider the IS instance depicted in Figure l.a, with m =2 and T = 15 hours.

Applying Algorithm 3, the jobs are already indexed in increasing order of their

processing times, and the first four jobs may be added to S without conflict (more than 2

simultaneous jobs) or overload (over 30 hours total). The following audit shows the

algorithm’s performance for the remaining jobs.

S j %“~)
> mT? Conflict’? S’ IS’1 >ISI? s* Es* 2 mT?

1,2,3,4 5 No Yes 1,3,4,5 No - -

1,2.3,4 6 No No - - - -

L2,3,4,6 I No Yes 1,3,4,5,6,7 Yes 1,2,3,5,6,7 Yes
1,2,3,5.6,7 8 Yes - - - - -

We end with the optimal subset S = { 1,2,3,5,6,7}. Note how job 5, which is

rejected at first (because a smaller job can be chosen instead), is later brought back

(because it has less overlap with other jobs); an unusual feature in a single-pass

optimization algorithm. The actual schedule of the jobs in S, if we keep the machines

equally loaded, can be constructed as follows. Let {t,, t,, . ..> be the sorted sequence of

the start and end times of the jobs in S in chronological order. Consider each interval

390 KHALID I. BOUZINA AND HAMILTON EMMONS

[ti, ti+i), i = 1, 2, Generally, if there are m machines and k (k<m) jobs are in process

during [ti, ti+,), partition the interval into m equal parts, and assign each machine in

rotation to one part of each job. Here, with m = 2, if two jobs are to be processed in a

given time interval, assign a machine to each job. If only one job is present, assign

each machine to half of the interval. The preemptive schedule of the jobs in S on the

two machines is depicted in Figure 2, with machines identified by roman numerals.

Note that, although this procedure is needed to guarantee a feasible schedule in a single

pass, schedules with far fewer preemptions are usually available with a little trial-and-

error.

I >

b 2.5 5 6 7 8 9 10 11 12 13 14 16 17 18 20 22 24

Time Axis

Figure 2: Preemptive Job Schedule for TIS.

5. Complexity of Maximal Weight Preemptive TIS

Consider the problem addressed in Section 4, but assume now that a weight wj is

associated with each job j, j=l,...,n and the goal is to provide a subset ofjobs with

maximal total weight. We now show that this problem is intractable.

Proposition 4: Maximal Weight Preemptive TIS is NP-Hard

INTERVAL SCHEDULING ON IDENTICAL MACHINES 391

Proof: Without loss of generality, assume that all the numerical data are positive real

integers, Also, for proof purposes, replace the problem addressed in Maximal Weight

Preemptive TIS by the question of whether there exists a feasible subset of jobs S such

that c wi 2 w, where w is a positive integer. To show completeness, we reduce the
iss

Knapsack problem to Maximal Weight Preemptive TIS. In an instance of Knapsack

(Garey and Johnson 1979) we are given a set { l,...,p} and with each one of its elements

j is associated two positive integers zj and vj reflecting respectively the size and the

value of j, j=l,...,p. Also, let 2 and V be two positive integers. We are asked to find a

subset U c { I,...,p} such that c zi I Z and c vi 2 V. Given such an instance of
iGU i&J

Knapsack, we construct the following instance for Maximal Weight Preemptive TIS.

n = p;

sj = 0, ej = zj, wj = vj, j=l,..., n;

m = p;

T = Z/p;

w = v.

Claim: There exist a subset U in { l,...,p} such that c zi I Z and c vi 2 V if and
ia icU

only if there exist a subset of jobs S such that all jobs in S can be scheduled

preemptively on m machines, no machine working more than T units of time and such

that c wi 2 w and c pi I mT.
IES its

Proof: Suppose that a subset U that solves the knapsack problem exists and let S = U.

It is easy to see that both inequalities c pi< mT and c wi 2 w are satisfied. Now, a
id iE.7

preemptive assignment of the jobs in S to machines satisfying the conditions that at no

time are there more than m jobs in process and no machine operates more than T units

of time is the following. Consider the units time intervals [0, l), [1,2), etc. Starting

392 KHALID 1. BOUZINA AND HAMILTON EMMONS

from 0 and moving one unit at a time, consider all jobs in S and assign all m = n

machines to each unit interval one by one in rotation. With n machines being allocated

and all of them being used an equal amount of time, the schedule S is feasible for

Maximal Weight Preemptive TIS. Reciprocally, it is trivial that if a solution exists for

Maximal Weight Preemptive TIS, the same solution is optimal for the Knapsack

problem. Cl

6. Concluding Remarks

Our contribution to the field of IS problems on identical machines through this

paper has been twofold. We first added to the work of Arkin and Silverberg (1987) and

provided a “greedy” type of algorithm solving Maximal IS together with a more

straightforward solution to Maximal Weight IS. Second, we introduced a new

dimension to the study done by Fishetti et al. (1989) and analyzed the maximization

criterion for IS problems with machine working time constraints. We developed an

algorithm solving Maximal Preemptive TIS and proved that Maximal Weight

Preemptive TIS is NP-Hard. Until now, we focused only on polynomially solvable

cases. Our next task is to design and analyze approximate algorithms for the intractable

problems described in this paper. Heuristic approaches based on the preemptive cases

are currently under investigation. Our study of IS problems is not limited to the

situation where machines are identical. In forthcoming publications, constraints such as

hierarchy (jobs can be processed only on machines of a certain type or bigger) and

machine intervals of availability (or personnel shifts) will be added to an IS instance.

References

Arkin, A.M. and Silverberg E.L. (1987) Scheduling Jobs with Fixed Start and End
Times, Discrete Annlied Mathematics, 18, l-8.

INTERVAL SCHEDULING ON IDENTICAL MACHINE.5 393

Carter, M.W. and Tovey C.A. (1992), When is the Classroom Assignment Problem
Hard? Onerations Research, 40, Supp. No 1, 28-39.

Dondeti, V.R. and Emmons H. (1992). Fixed job Scheduling with Two types of
Processors, Ouerations Research, 40, Supp. No 1, 76-85.

Fischetti, M., Martello S. and Toth P. (1989), The Fixed Job Schedule Problem with
Working Time Constraints, Onerations Research, 3, 395-403.

Garey, M.R. and Johnson D.S. (1979), Computers and Intractabilitv: A Guide to the
Theorv of NP-Comuleteness, Freeman, San Francisco.

Golumbic, M.C. (1980) Alporithmic Grauh Theorv and Perfect Grauhs, Academic Press

Kolen, A.J.W. and Kroon L.G. (1991) On the Computational Complexity of
(Maximum) Class Scheduling, EuroDean Journal Of Ouerations Research, 54, 23-38.

Kolen, A.J.W., Lenstra J.K. and Papadimitriou C.H. (1986), Interval Scheduling
Problems, Manuscript, Centre for Mathematics and Computer Science, C.W.I.,
Kruislaan 413, 1098 SJ Amsterdam.

Martello S. and Toth P. (1986) A Heuristic Approach to the Bus Driver Scheduling
Problem, Eurouean Journal Of Onerations Research, 24, 106- 117.

