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Abstract: Interval Scheduling problems (IS) address the situation where jobs with 

fixed start and fixed end times are to be processed on parallel identical machines. The 

optimization criteria of interest are the maximization of the number of jobs completed 

and, in case weights are associated with jobs, the subset of jobs with maximal total 

weight. We present polynomial solutions to several IS problems and study 

computational complexity issues in the situation where bounds are imposed on the total 

operating time of the machines. With this constraint, we show that tractability is 

achieved again when job preemption is allowed. 
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Interval Scheduling on Identical Machines 

Interval Scheduling (IS) is a class of scheduling problems where independent 

tasks, each with a fixed start time and fixed end time, are to be processed in a parallel 

machine environment. In this study, it is further assumed that all machines are identical. 

Therefore, with no constraint on machine availability, it is easy to see that the maximal 

job overlap over time equals the minimal number of machines required to complete all 

jobs. However, an interesting combinatorial issue rises when, given the total number of 

machines available, not all jobs can be processed. In this situation, two problems require 

attention. First, the finding of the maximal number of completed jobs (Maximal IS). 

Then, in case a weight representing the task priority or value is associated with each job, 

the finding of a subset of jobs with maximal total weight (Maximal Weight IS). The aim 

of this paper is to address such problems under different scenarios. 

IS problems have received much attention during the last decade or so and may 

be encountered under different names in the literature, such as “Fixed Job Scheduling” 

(Arkin & Silverberg 1987, Fishetti et al. 1989 and Dondeti & Emmons 1992) “The 

Classroom Assignment Problem” (Carter and Tovey 1992) “The Bus Driver Scheduling 

Problem” (Martello and Toth 1986) “Class Scheduling” (Kolen and Kroon 1991). 

However, we prefer to refer to them as IS because of the analogy to an even broader 

class of problems addressed in Graph Theory, namely, Interval Graph problems 

(Golumbic 1980 and Kolen et al. 1986). 

In this paper, we first present an algorithm solving Maximal IS. Next, a 

Minimal Cost Flow formulation is presented for Maximal Weight IS and is extended to 

solve Maximal IS with minimal total processing time. Thereafter, we introduce a 

constraint on the working time of the machines, namely that no machine operates for 

more than T units of time. This problem is referred to as TIS. We provide an algorithm 



INTERVAL SCHEDULING ON IDENTICAL MACHINE.5 381 

solving Maximal Preemptive TIS (that is, when job preemption is allowed) and show 

that Maximal Weight Preemptive TIS is M-Hard. Integer programming formulations 

are also presented. 

1. An algorithm for Maximal IS 

Given n jobs with fixed start times sj and fixed end times ej, j=l,...,n, we seek 

the largest subset, S, of jobs that can be processed on m parallel identical machines. 

The following algorithm finds a solution to Maximal IS in O(n max(log n, m)) time. 

Algorithm 1: 

1. I Set S to the empv set. 

I. 2. Sort jobs in chronological order of arrival. 

1.3. Consider jobs sequentially. At each start time add the arriving job to 5’. 

If there is no machine to accommodate it, remove from S the job with latest 

ending time. 

It is easy to see that Algorithm 1 produces a feasible schedule with the desired 

complexity. To establish optimality, we first state the following lemma without proof. 

Lemma 1: Given a set of jobs to be scheduled, suppose one job is shortened (its start 

time is unchanged, but its end time is earlier), with all else unchanged. 

Then the maximal number of jobs that can be scheduled is either unchanged 

or increased. 

Without loss of generality, we can assume all jobs have distinct start times. Thus, in 

case i >l jobs have the same arrival time s, assign new start times s, S+E, s+~E,..., s + 

(I-1)~ for infinitesimal E > 0, in any order. We now present the proposition on which 

the algorithm depends. 

Proposition 1: Let t, = earliest time at which more than m jobs require processing, 

J = (jobs requiring processing at t,) and ek = maxjEJ ej. 

Then there exists an optimal schedule which does not include k. 
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Proof: Clearly, one of the (m+l) jobs in J cannot be done. The choice depends only on 

the future (t > t,), since all jobs started earlier must have been successfully completed or 

be in J, and the amount of processing already undergone at time to by jobs in J is 

irrelevant for resolving the present and future conflicts. Thus, redefine the start times of 

all j E J to be to. Now, suppose we remove some job i rather than job k. By switching 

them (remove k rather than i), we are replacing a longer job with a shorter, or in effect 

shortening a job. By Lemma 1, this can only increase the number of jobs we can 

eventually schedule. 0 

2. Minimal Cost Flow Formulation of Maximal Weight IS 

Given an instance of IS, assume that a weight wj is associated with each job j, 

j=l,...,n and let us now address the problem of finding a subset of jobs S such that S is 

feasible and the sum of the weights of the jobs in S is maximum. In Arkin and 

Silverberg (1987) a solution to this problem based on a minimal cost flow formulation 

is given. Their proposed algorithm requires a preliminary construction of the interval 

graph corresponding to the IS instance and the identification of all maximal cliques in 

such graph (see Golumbic 1980). We will present an algorithm for the problem that is 

also based on the solving of a minimal cost flow problem. However, its related network 

construction is obtained directly from the IS instance and requires exactly n+l nodes 

and 2n arcs. 

Algorithm 2: 

2. I Index jobs in chronological order of arrival. 

2.2 Create nodes s = VI, v2,..,,vn for each job and dummy node t = ‘;?+k 

Connect vj to vj+l with arc of cost zero and capacity m, j=l,...,n. 

2.3 Create arc (vj,v,$ where k is thefirstjob not overlapping with job j, j=I,...n. 

If no such job k exists, create arc (5 t). Each of these arc has COSI -113 and 

capacity 1. 
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2.4 Require a flow of m from s to t and solve the minimal cost flow problem. 

Proposition 2: The optimal solution to the Minimal Cost Flow problem is also an 

optimal solution to Maximal Weight IS. 

Proof: Let V be the subset of jobs corresponding to arcs with cost -wj and a flow of 

one unit on them. First, let us show that V is feasible for Maximal Weight IS. Note that 

having a flow of one unit on such arcs is equivalent to assigning a machine to the 

corresponding job. Also, since the node to which the flow is surrendered corresponds to 

the first job that does not overlap with the currently processed job, at no time do we 

have a machine assigned to more than one job. Furthermore, since only a total of m 

units is allowed through the network, at most m machines at all times will be assigned to 

jobs. Hence, V is feasible for Maximal Weight IS. Now, an optimal solution to 

Maximal Weight IS is equivalent to an optimal solution to the minimal cost flow 

problem when we note that job j is processed if and only if the corresponding arc (vj,vL) 

has a non-zero flow on it. Therefore, the absolute value of the minimal cost solution is 

the maximal total value of the jobs processed for Maximal Weight IS. 0 

Example: Consider the jobs in Figure 1 .a, to be scheduled on 2 machines. 

5 7 3 
,  ,  1 I  

0 3 5 6 7 8 9 IO 11 12 14 16 181920 22 24 

Time Axis 

Figure I.a: Insfance of IS Problem. 
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For Maximal IS, Algorithm 1 shows that 6 jobs can be processed. It selects job 2 and 8 

for omission, though other pairs of jobs are possible. For Maximal Weight IS, the 

network structure for Algorithm 2 is given in Figure 1 .b, where each arc is labeled with 

its cost, -wj , and capacity, 1, except for the arcs generated in Step 2 (those on the straight 

line from s to t) whose costs and capacities are 0 and 2, respectively. If, for example, we 

charge by the hour and wish to find the subset of jobs that will keep our 2 machines 

busiest, then with wj = pj , j = l,...,S, the minimal cost flow is -5 and utilizes the arcs 

corresponding to the 5 jobs {4,5,6,7,8}. 

-W 
4 c 

1 
/ 

-w2 1 -we 1 
. 

/ 

S, _ y\ _ _ %_ a . . 1 , - / VT .' /- / . / 

V4 V2 Vl % v6 

. 
/ , 

-wg 1 -w1 1 -w,j 1 

t 

-- 
-W7 1 -wg 1 

Figure I. b: Network Representation 

Let us now reexamine the Maximal IS problem and address the dual criterion of 

determining a subset S of maximal cardinality with the property that the sum of the 

weights of the jobs in S is maximal. 

Corollary 1: Let M is a positive real number such that M > 2 wj , and redefine wj as 
&I 

wj +M for each job j. Then Algorithm 2 gives an optimal solution to Maximal 

IS with Maximal Total Weight. 
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Proof: Since M is so large, maximization of total weights will first maximize the 

number of jobs scheduled, since each contributes M to the objective. Second, it will 

maximize the weights added. 0 

The following special case of Corollary 1, where jobs weights are not initially given, 

will be needed later in this paper. 

Corollary 2: For each job j with processing time pj = ej - sj., define a weight wj = M - pj, 

where M is a positive real number such that M 22 pj. Then Algorithm 2 
jd 

gives an optimal solution to Maximal IS with Minimal Total Processing Time 

3. Model and Complexity of Maximal TIS 

Let us add the constraint that no machine may work, in total, for more than a 

given operating time T and consider an instance of TIS. Notice that the decision 

version of TIS, that is, the problem of determining whether there is a feasible schedule 

for all jobs is NP-Complete (Fischetti et al. 1989). The authors proved completeness 

through transformation from the Bin Packing problem (Garey and Johnson 1979) by 

showing that solving an instance of TIS where no two jobs overlap will solve the 

instance of the Bin Packing problem as well. Consequently, Maximal TIS is an NP- 

Hard problem. Maximal TIS and Maximal Weight TIS can be stated as a O-1 Integer 

programming problem as follows. Let {t,, t,,...} be the sorted sequence of the sj’s and 

ej’s in chronological order with duplicates removed and let P, be the set of jobs available 

in interval [\, $+i), k = 1, 2,... Finally, create binary variables xij taking the value one if 

and only if machine i processes job j for i=l,...,m and j=l,...,n. 

m n 
Maximize C C wjxij 

i=lj=l 
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Subject to : 
m 
z XB II j = I,...+ (1) 

i=l 

c xij 2 1 i = l,..., m; k = 1, 2 ,... (2) 
j EPk 

g pjxij I T i = l,...,m (3) 
j=l 

XjjE ((41) i=l ,..., m; j = I,..., n (4) 

Constraints (I) require that each job j be processed on only one machine. Constraints 

(2) state that each machine cannot process more than one job at a time. Constraints (3) 

prohibit any machine from having a total operating time exceeding T. 

4. An algorithm for Maximal Preemptive TIS 

Given an instance of TIS, let us introduce the relaxation that jobs may be split 

and assigned to two or more machines. Then, this preemptive version of TIS becomes 

tractable when we seek a feasible set of jobs S with maximal cardinality. The following 

algorithm for Maximal Preemptive TIS provides only the set S of jobs of maximal 

cardinality which satisfies C pi 2 mT and has no more than m jobs in process at any 
id 

time. The actual (preemptive) schedule of the jobs is constructed by keeping the 

machines equally loaded over time. The start and end times of jobs may be used as 

increments in this procedure. 

Algorithm 3: 

3.1 Index jobs in increasing order of their processing time pj = ej - si j = 1, . . ..n. 

Break ties arbitrarily. 

3.2 Initialize: S = 0, j = 0. 
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3.3 Repeat 

j =j +I. 

If m-!-l jobs in Scifj) are con@cting at some time point, 

apply Algorithm I to the jobs in {l,...,j}. 

Let S’ be the resulting schedule. 

If Is/= IS/H, 

apply Corollary 2 of Algorithm 2 to the jobs in {l,...,j). 

Let S* be the resulting schedule. 

If C pi _<rnT, makeS=S*. 
i&s- 

Endif 

Endif 

Else make S = S c, 0). 

Endif 

Until j = n orpj+l + C pi > mT. 
its 

387 

Feasibility is insured in step 3.3 of the algorithm Complexity is dictated by step 3.3, 

when Algorithm 2 is used, in which case a minimal cost flow is sought for in a network 

having j+l nodes and 2j arcs, j = l,...,n. Optimality will be shown in Proposition 3, but 

first, two related lemmas are stated (the proof of Lemma 2 is trivial and is omitted). 

Lemma 2: Consider an instance of TIS where at no time are there more than m 

overlapping jobs, and assume the jobs ordered in increasing order of their 

processing times. An optimal schedule for Maximal Preemptive TIS for such 
j+l 

an instance includes the first k jobs for which k = min(j: 1 pi > mT}. 
i=l 

Lemma 3: Consider an instance of TIS where the jobs are ordered in increasing order of 

their processing times and assume that, at each iteration of Algorithm 3, a 

feasible set S with maximal cardinality and minimal sum of the processing 
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times is maintained. If at some iteration j, the total processing time of the 

jobs in S u G} exceeds mT, then the current schedule S is optimal. 

Proof: Given the ordered sequence of jobs, consider all jobs in J = { l,...j-1 }. We have 

that, for any feasible set S’ in J, 1 S’ 1 zz 1 S 1 and if 1 S’ 1 = 1 S I then c pi > C pi. Also, 
id isS 

from Lemma 2, it follows that replacing any job in S by a job not in J, will only result in a 

schedule of bigger sum of the processing times. Now, consider adding a job j’ such that 

pf 2 pj to the list S of scheduled jobs. Whether j’ conflicts or not with any of the jobs in S, 

we still have c pi> mT for a feasible set S’ in J that can accommodate j’. Hence, if S is 
icS'u!j) 

as described in Lemma 3, it is optimal for Maximal Preemptive TIS. Cl 

Proposition 3: The schedule S produced by Algorithm 3 is optimal for Maximal 

Preemptive TIS. 

Proof: It follows from Lemma 3 that, at this stage, we need only show that at each 

iteration the schedule S produced by Algorithm 3 has maximal cardinality (property 1) 

and the sum of the processing times of the jobs in S is minimal (property 2). Assume 

the result true up to the (j-l)th iteration and consider adding the jth job to S from the 

ordered list. Three cases need to be examined. If the addition of job j does not create 

m+l conflicting jobs at any time point then, naturally properties 1 and 2 are maintained 

for the new schedule Su{j}. Now, if a conflict does occur, but the addition of job j 

does not produce a schedule with higher cardinality, then it follows from Proposition 1 

and from the fact that the processing time of job j is greater than or equal to any of the 

jobs scanned so far, that the current schedule S should be kept and consequently, no 

property is violated. Finally, suppose that the adjunction of job j creates a conflict but 

there is at least a set S’ in { l,...j} such that 1 S’ 1 = 1 S 1 +l. Then the schedule S* 

provided, when using Algorithm 2 for the jobs in { I,...j} satisfies properties 1 and 2 as 

shown in Corollary 1. Therefore, if the sum of the processing times of the jobs in S* 
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does not exceed mT, S* is optimal up to iteration j. If c pi > mT, S* cannot be 

389 

accepted and neither will be any other schedule in ( l,...j} with the same cardinality as 

S* for the obvious reason that the sum of the processing times of the jobs in S* is 

already minimal. 

Hence, the current set S remains optimal for the jth iteration. However, this does 

not constitute a stopping criterion for Algorithm 3. Indeed, the set S* has been created 

in respect to the adjunction of job j. For any other job k, k>j, it is possible for the 

algorithm to produce (at a later iteration) a set S* such that c pi5 mT. 
~sS’u(k) 

Considering that all outcomes have been examined, the subset of jobs S constructed by 

Algorithm 3 is optimal for Maximal Preemptive TIS. Cl 

Example: Consider the IS instance depicted in Figure l.a, with m =2 and T = 15 hours. 

Applying Algorithm 3, the jobs are already indexed in increasing order of their 

processing times, and the first four jobs may be added to S without conflict (more than 2 

simultaneous jobs) or overload (over 30 hours total). The following audit shows the 

algorithm’s performance for the remaining jobs. 

S j %“~) 
> mT? Conflict’? S’ IS’1 >ISI? s* Es* 2 mT? 

1,2,3,4 5 No Yes 1,3,4,5 No - - 

1,2.3,4 6 No No - - - - 

L2,3,4,6 I No Yes 1,3,4,5,6,7 Yes 1,2,3,5,6,7 Yes 
1,2,3,5.6,7 8 Yes - - - - - 

We end with the optimal subset S = { 1,2,3,5,6,7}. Note how job 5, which is 

rejected at first (because a smaller job can be chosen instead), is later brought back 

(because it has less overlap with other jobs); an unusual feature in a single-pass 

optimization algorithm. The actual schedule of the jobs in S, if we keep the machines 

equally loaded, can be constructed as follows. Let {t,, t,, . ..> be the sorted sequence of 

the start and end times of the jobs in S in chronological order. Consider each interval 
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[ti, ti+i), i = 1, 2, Generally, if there are m machines and k (k<m) jobs are in process 

during [ti, ti+,), partition the interval into m equal parts, and assign each machine in 

rotation to one part of each job. Here, with m = 2, if two jobs are to be processed in a 

given time interval, assign a machine to each job. If only one job is present, assign 

each machine to half of the interval. The preemptive schedule of the jobs in S on the 

two machines is depicted in Figure 2, with machines identified by roman numerals. 

Note that, although this procedure is needed to guarantee a feasible schedule in a single 

pass, schedules with far fewer preemptions are usually available with a little trial-and- 

error. 

I > 

b 2.5 5 6 7 8 9 10 11 12 13 14 16 17 18 20 22 24 

Time Axis 

Figure 2: Preemptive Job Schedule for TIS. 

5. Complexity of Maximal Weight Preemptive TIS 

Consider the problem addressed in Section 4, but assume now that a weight wj is 

associated with each job j, j=l,...,n and the goal is to provide a subset ofjobs with 

maximal total weight. We now show that this problem is intractable. 

Proposition 4: Maximal Weight Preemptive TIS is NP-Hard 
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Proof: Without loss of generality, assume that all the numerical data are positive real 

integers, Also, for proof purposes, replace the problem addressed in Maximal Weight 

Preemptive TIS by the question of whether there exists a feasible subset of jobs S such 

that c wi 2 w, where w is a positive integer. To show completeness, we reduce the 
iss 

Knapsack problem to Maximal Weight Preemptive TIS. In an instance of Knapsack 

(Garey and Johnson 1979) we are given a set { l,...,p} and with each one of its elements 

j is associated two positive integers zj and vj reflecting respectively the size and the 

value of j, j=l,...,p. Also, let 2 and V be two positive integers. We are asked to find a 

subset U c { I,...,p} such that c zi I Z and c vi 2 V. Given such an instance of 
iGU i&J 

Knapsack, we construct the following instance for Maximal Weight Preemptive TIS. 

n = p; 

sj = 0, ej = zj, wj = vj, j=l,..., n; 

m = p; 

T = Z/p; 

w = v. 

Claim: There exist a subset U in { l,...,p} such that c zi I Z and c vi 2 V if and 
ia icU 

only if there exist a subset of jobs S such that all jobs in S can be scheduled 

preemptively on m machines, no machine working more than T units of time and such 

that c wi 2 w and c pi I mT. 
IES its 

Proof: Suppose that a subset U that solves the knapsack problem exists and let S = U. 

It is easy to see that both inequalities c pi< mT and c wi 2 w are satisfied. Now, a 
id iE.7 

preemptive assignment of the jobs in S to machines satisfying the conditions that at no 

time are there more than m jobs in process and no machine operates more than T units 

of time is the following. Consider the units time intervals [0, l), [ 1,2), etc. Starting 
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from 0 and moving one unit at a time, consider all jobs in S and assign all m = n 

machines to each unit interval one by one in rotation. With n machines being allocated 

and all of them being used an equal amount of time, the schedule S is feasible for 

Maximal Weight Preemptive TIS. Reciprocally, it is trivial that if a solution exists for 

Maximal Weight Preemptive TIS, the same solution is optimal for the Knapsack 

problem. Cl 

6. Concluding Remarks 

Our contribution to the field of IS problems on identical machines through this 

paper has been twofold. We first added to the work of Arkin and Silverberg (1987) and 

provided a “greedy” type of algorithm solving Maximal IS together with a more 

straightforward solution to Maximal Weight IS. Second, we introduced a new 

dimension to the study done by Fishetti et al. (1989) and analyzed the maximization 

criterion for IS problems with machine working time constraints. We developed an 

algorithm solving Maximal Preemptive TIS and proved that Maximal Weight 

Preemptive TIS is NP-Hard. Until now, we focused only on polynomially solvable 

cases. Our next task is to design and analyze approximate algorithms for the intractable 

problems described in this paper. Heuristic approaches based on the preemptive cases 

are currently under investigation. Our study of IS problems is not limited to the 

situation where machines are identical. In forthcoming publications, constraints such as 

hierarchy (jobs can be processed only on machines of a certain type or bigger) and 

machine intervals of availability (or personnel shifts) will be added to an IS instance. 
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